Theorems and Conjectures Involving Rook Polynomials with Real Roots

نویسندگان

  • James Haglund
  • Ken Ono
چکیده

Let A = (a ij) be a real n n matrix with non-negative entries which are weakly increasing down columns. If B = (b ij) is the nn matrix where b ij := a ij +z; then we conjecture that all of the roots of the permanent of B, as a polynomial in z; are real. Here we establish several special cases of the conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Investigations Involving Rook Polynomials with Only Real Roots

We present a number of conjectures involving rook polynomials having only real zeros. Many of these generalize a previous conjecture of the author, K. Ono, and D. G. Wagner, namely that if A is a real n n matrix which is weakly increasing down columns, then the permanent of zA + Jn has only real zeros. In some cases these conjectures are motivated by factorization theorems for Ferrers boards. S...

متن کامل

Theorems and Conjectures Involving Rook Polynomials with Only Real Zeros

Let A = (aij) be a real n n matrix with non-negative entries which are weakly increasing down columns. If B = (bij) is the n n matrix where bij := aij+z; then we conjecture that all of the roots of the permanent of B, as a polynomial in z; are real. Here we establish several special cases of the conjecture.

متن کامل

Further Investigations Involving Rook Polynomials With Only Real Zeros

We study the zeros of two families of polynomials related to rook theory and matchings in graphs. One of these families is based on the cover polynomial of a digraph introduced by Chung and Graham [ChGr]. Another involves a version of the \hit polynomial" of rook theory, but which applies to weighted matchings in (non-bipartite) graphs. For both of these families we prove a result which is anal...

متن کامل

Augmented Rook Boards and General Product Formulas

There are a number of so-called factorization theorems for rook polynomials that have appeared in the literature. For example, Goldman, Joichi and White [6] showed that for any Ferrers board B = F (b1, b2, . . . , bn), n

متن کامل

Symmetric Function Generalizations of Graph Polynomials

Motivated by certain conjectures regarding immanants of Jacobi-Trudi matrices, Stanley has recently defined and studied a symmetric function generalization XG of the chromatic polynomial of a graph G. Independently, Chung and Graham have defined and studied a directed graph invariant called the cover polynomial. The cover polynomial is closely related to the chromatic polynomial and to the rook...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997